On convergence of the proximal point algorithm in Banach spaces
نویسندگان
چکیده
منابع مشابه
W-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملThe prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces
It is known, by Rockafellar (SIAM J Control Optim 14:877–898, 1976), that the proximal point algorithm (PPA) converges weakly to a zero of a maximal monotone operator in a Hilbert space, but it fails to converge strongly. Lehdili and Moudafi (Optimization 37:239–252, 1996) introduced the new prox-Tikhonov regularization method for PPA to generate a strongly convergent sequence and established a...
متن کاملStrong convergence of a proximal-type algorithm for an occasionally pseudomonotone operator in Banach spaces
It is known that the proximal point algorithm converges weakly to a zero of a maximal monotone operator, but it fails to converge strongly. Then, in (Math. Program. 87:189-202, 2000), Solodov and Svaiter introduced the new proximal-type algorithm to generate a strongly convergent sequence and established a convergence property for the algorithm in Hilbert spaces. Further, Kamimura and Takahashi...
متن کاملConvergence of the dual greedy algorithm in Banach spaces
We show convergence of the weak dual greedy algorithm in wide class of Banach spaces, extending our previous result where it was shown to converge in subspaces of quotients of Lp (for 1 < p < ∞). In particular, we show it converges in the Schatten ideals Sp when 1 < p < ∞ and in any Banach lattice which is p-convex and q-concave with constants one, where 1 < p < q < ∞. We also discuss convergen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2011
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-10883-9